Collapse of Older RC Frames during Earthquakes

- Ongoing Project and Joint Strength Estimation

A Collaborative Study: UBC / NCREE / PEER

Soheil Yavari, UBC Kenneth Elwood, UBC Tracy Lin, NTU Chuin-lin Wu, NCREE Shyh-Jiann Hwang, NCREE Jack Moehle, PEER

Ongoing Project

- Scheduling
- Proof Tests
- Constant Axial Load Applying System
- Lead Weight Fixture

Scheduling

Activity		Jul		Aug		Sep		Oct		Nov		Dec	
Construction of RC frame specimen													
Construction of steel supporting frame													
Proof tests for high axial load applying system													
Shake table tests													

Proof Tests

- (1) Cross-sectional area of column: 20cmx40cm
- (2) 100cm clear column height
- (3) Flexure, and flexure-shear failures

embedded PVC sleeves for bolting lead packets

4 embedded bolts for connecting axial load applying system to the column

Purposes of single column tests:(1) Performance verification of high axial load applying system(2) Performance verification of lead weight fixture mechanism

Constant Axial Load Applying System

MTS Pumping System (e.g., 200kgf/cm²)

Pressure reducing valve

Performance requirements:

Pressure reducing and relieving valve (fine tuning to keep a constant pressure at 150kg/cm² level to minimize the influence from column lengthening/shortening)

- ✓ No more than 10% pressure loss in cylinder under a vertical setback of 25mm
- \checkmark Synchronizing valves to ensure simultaneous axial load applications

Lead Weight Fixture

prestressing rod + steel shim + rubber shim

Joint Strength Estimation

- Demand Analysis
- Strength Analysis
- Strength-to-Demand Ratio
- Discussion

Demand Analysis

Strength-to-Demand Ratio

Discussion

Compare with the specimens tested by :

Kitayama, Kojima, Otani and Aoyama (1989; in Japan)

Compare with the specimens tested by :

Kitayama, Kojima, Otani and Aoyama (1989; in Japan)

For Interior Joint

	BEAM	COLUMN	hc / d₀	JOINT SHEAR STRESS
TAIWAN	200×30 0 (mm)	200×200 (mm)	23.6	0.27 ~ 0.31 f'c
JAPAN	200×30 0 (mm)	300×300 (mm)	23.6	0.35 ~ 0.40 f'c

70 mm

Fig. 15--Story drift -- joint shear stress relations

